Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

نویسندگان

  • Li Hu
  • Xiaorui Tian
  • Yingzhou Huang
  • Liang Fang
  • Yurui Fang
چکیده

Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extrinsic chirality of non-concentric plasmonic nanorings

We show how extrinsic chirality, i.e. the optical activity of achiral media exhibited at oblique light incidence, can be achieved in plasmonic nanorings by symmetry breaking. We demonstrate that even a small, 5% offset of an inner hole of a 190 nm gold ring results in a measurable circular dichroism signal in the near-infrared region. By using computer simulations, we show that optical activity...

متن کامل

Optical Chirality Enhancement in Twisted Arrays of Plasmonic Nano-rods

An important property of electromagnetic fields, which arises from the interaction between fields and chiral molecules, is called optical chirality. By enhancing this field property, while maintaining constant input power, we are able to increase absorption of circularly polarized light by chiral molecules of a certain handedness. This enhancement is achieved through the use of achiral plasmoni...

متن کامل

Giant optical activity from the radiative electromagnetic interactions in plasmonic nanoantennas.

We fabricate the linear chains of twisted gold nanorods by a facile chiral molecular templating method. In such a chiral plasmonic system, particle-particle separation distances are in the order of the light wavelength and are much larger than the sizes of individual particles. As a result, the inter-particle interactions in this chiral system are mediated mainly by a relatively weak far-field ...

متن کامل

Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement.

We present a new design of plasmonic nanoantenna with slant gap for optical chirality engineering. At resonance, the slant gap provides highly enhanced electric field parallel to external magnetic field with a phase delay of π/2, resulting in enhanced optical chirality. We show by numerical simulations that upon linearly polarized excitation our nanoantenna can generate near field with enhanced...

متن کامل

Angular momentum-induced circular dichroism in non-chiral nanostructures.

Circular dichroism, that is, the differential absorption of a system to left and right circularly polarized light, is one of the only techniques capable of providing morphological information of certain samples. In biology, for instance, circular dichroism spectroscopy is widely used to study the structure of proteins. More recently, it has also been used to characterize metamaterials and plasm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 8 6  شماره 

صفحات  -

تاریخ انتشار 2016